DOI:
江苏卫生事业管理:2025,Vol.>>Issue(8):1171-1175
本文二维码信息
码上扫一扫!
基于数据驱动的医用电子内窥镜故障分级与预防性维护策略研究△
刘 盾,陈 健,曾闻如,王金毅,邱春冬*
(南京大学医学院附属鼓楼医院临床医学工程处)
Research on Fault Classification and Preventive Maintenance Strategy of Medical Electronic Endoscopes Based on Data-driven△
LIU Dun,CHEN Jian,ZENG Wenru,WANG Jinyi,QIU Chundong*
(Department of Clinical Medical Engineering,Nanjing Drum Hospital,The Affiliated Hospital of Nanjing University Medical School)
摘要
图/表
参考文献
相似文献
本文已被:浏览 87次   下载 28
    
中文摘要: 目的:针对传统维护方法依赖人为经验和单一报修措施导致的医用电子内窥镜使用率和周转率下降问题,本研究旨在构建一种数据驱动的故障分级模型,以实现精准的预防性维护,减少计划外停机时间并降低维修成本。方法:提出一种融合TF-IDF文本挖掘与随机森林算法的故障分级模型。首先,利用TF-IDF方法从历史维修记录的故障文本中提取关键特征;其次,基于随机森林算法构建故障分级模型,并通过可视化决策树实现维护措施的精准推荐。结果:模型在识别轻微故障(三级)和演变中故障(二级)时的准确率分别达到90%和69.7%,显著优于传统经验依赖方法。可视化决策树直观展示了故障分级逻辑,有效指导了日常维护工作。结论:本研究提出的数据驱动故障分级模型能够精准识别内窥镜故障等级,并通过可视化手段优化维护流程,显著提升了设备使用效率和维护效率。未来将通过扩大数据样本和集成更先进的挖掘方法,进一步优化模型的泛化能力和应用范围,为医用电子内窥镜的数字化管理提供支持。
Abstract:Objective:Due to the traditional maintenance methods relying on human experience and a single repair measure,the usage and turnover of endoscopes have decreased. This article proposes a data-driven solution. Through machine learning methods,analyze historical maintenance records,extract key features of fault text using TF-IDF,and construct a fault classification model based on the random forest algorithm. The experimental results show that the model has high accuracy in identifying minor and evolving faults,effectively reducing unplanned downtime of endoscopes and lowering maintenance costs. First,the TF-IDF method was used to extract key features from the fault text in historical maintenance records. Second,a fault classification model was constructed based on the random forest algorithm,and a visual decision tree was used to accurately recommend maintenance measures. Results:The model achieved an accuracy of 90% and 69.7% for identifying minor faults(level 3) and evolving faults(level 2),respectively,significantly outperforming traditional empirical methods. In addition,through visualization methods,the model can intuitively guide daily maintenance work and improve maintenance efficiency. In the future,research will further enhance the digital prevention and maintenance level of endoscopes by expanding data volume and integrating more advanced mining methods. To provide support for digital management of medical electronic endoscopes.
文章编号:     中图分类号:    文献标志码:
基金项目:国家卫生健康委医院管理研究所“2024医学工程研究项目”(2024MEB207) 国家卫生健康委医院管理研究所“2024医学工程研究项目”(2024MEB207)
引用文本:
刘 盾,陈 健,曾闻如,王金毅,邱春冬*.基于数据驱动的医用电子内窥镜故障分级与预防性维护策略研究△[J].江苏卫生事业管理,2025,36(8):1171-1175.
LIU Dun,CHEN Jian,ZENG Wenru,WANG Jinyi,QIU Chundong*.Research on Fault Classification and Preventive Maintenance Strategy of Medical Electronic Endoscopes Based on Data-driven△[J].Jiangsu Health System Management,2025,36(8):1171-1175.

用微信扫一扫

用微信扫一扫